MRF89XA
2.9.1
TRANSMITTER ARCHITECTURE
In OOK mode, the phase difference between the I and
Figure 2-6 illustrates the transmitter architecture block
diagram. The baseband I and Q signals are digitally
generated by a DDS whose Digital-to-Analog
Converters (DAC) followed by two anti-aliasing low-
pass filters transform the digital signal into analog in-
phase (I) and quadrature (Q) components whose
frequency is the selected frequency deviation, is set
using the FDVAL<7:0> bits from FDEVREG<7:0>.
In FSK mode, the relative phase of I and Q is switched
by the input data between -90° and +90° with continu-
ous phase. The modulation is therefore performed at
this initial stage, because the information contained in
the phase difference will be converted into a frequency
shift when the I and Q signals are up-converted in the
first mixer stage. This first up-conversion stage is dupli-
cated to enhance image rejection. The FSK convention
is such that:
DATA = 1 → f rf + f dev
DATA = 0 → f rf – f dev
Q channels is kept constant (independent of the
transmitted data). Thus, the first stage of up-conversion
creates a fixed frequency signal at the low IF = f dev (this
explains why the transmitted OOK spectrum is offset by
f dev ). OOK Modulation is accomplished by switching the
PA and PA regulator stages ON and OFF. By
convention:
DATA = 1 → PAon
DATA = 0 → PAoff
After the interpolation filters, a set of four mixers
combines the I and Q signals and converts them into a
pair of complex signals at the second intermediate
frequency, equal to one-eighth of the LO frequency, or
one-ninth of the RF frequency. These two new I and Q
signals are then combined and up-converted to the
final RF frequency by two quadrature mixers fed by the
LO signal. The signal is pre-amplified, and then the
transmitter output is driven by a final power amplifier
stage. The I and Q signal details are illustrated in
Figure 2-7 .
FIGURE 2-7:
I(t), Q(t) Signals Overview
1
Fdev
I(t)
Q(t)
DS70622C-page 20
Preliminary
? 2010–2011 Microchip Technology Inc.
相关PDF资料
MRF89XAM9A-I/RM IC TXRX MOD 915MHZ ULP SUB-GHZ
MRX-001-433DR-B MODULE RECEIVER 433MHZ 18DIP
MRX-002-433DR-B MODULE RECEIVER 433MHZ 18DIP
MRX-002SL-433DR-B MODULE RCVR 433MHZ SAW LN 24DIP
MRX-005-915DR-B MODULE RECEIVER 915MHZ 18DIP
MRX-005SL-915DR-B MODULE RCVR 915MHZ SAW LN 24DIP
MRX-007-433DR-B MODULE RECEIVER 433MHZ 18DIP
MRX-008-433DR-B MODULE RECEIVER 433MHZ 18DIP
相关代理商/技术参数
MRF89XAM8A-I 制造商:MICROCHIP 制造商全称:Microchip Technology 功能描述:Ultra Low-Power, Integrated ISM Band Sub-GHz Transceiver
MRF89XAM8A-I/RM 功能描述:射频模块 868MHz Sub-GHz transceiver module RoHS:否 制造商:Linx Technologies 产品:Transceiver Modules 频带:902 MHz to 928 MHz 输出功率:- 15.5 dBm to + 12.5 dBm 接口类型:UART 工作电源电压:- 0.3 VDC to + 5.5 VDC 传输供电电流:38.1 mA 接收供电电流:22.7 mA 天线连接器类型:U.FL 最大工作温度:+ 85 C 尺寸:1.15 mm x 0.63 mm x 0.131 mm
MRF89XAM8A-I/RM 制造商:Microchip Technology Inc 功能描述:, Leaded Process Compatible:Yes, Peak Re
MRF89XAM9A_12 制造商:MICROCHIP 制造商全称:Microchip Technology 功能描述:915 MHz Ultra Low-Power Sub-GHz Transceiver Module
MRF89XAM9A-I/RM 功能描述:射频模块 915MHz Sub-GHz Transceiver Mod RoHS:否 制造商:Linx Technologies 产品:Transceiver Modules 频带:902 MHz to 928 MHz 输出功率:- 15.5 dBm to + 12.5 dBm 接口类型:UART 工作电源电压:- 0.3 VDC to + 5.5 VDC 传输供电电流:38.1 mA 接收供电电流:22.7 mA 天线连接器类型:U.FL 最大工作温度:+ 85 C 尺寸:1.15 mm x 0.63 mm x 0.131 mm
MRF89XAM9AT-I/RM 制造商:Microchip Technology Inc 功能描述:915 MHz Ultra Low-Power Sub-GHz Transceiver Module
MRF89XAT-I/MQ 功能描述:射频收发器 868/915/950 MHz Sub-GHz transceiver RoHS:否 制造商:Atmel 频率范围:2322 MHz to 2527 MHz 最大数据速率:2000 Kbps 调制格式:OQPSK 输出功率:4 dBm 类型: 工作电源电压:1.8 V to 3.6 V 最大工作温度:+ 85 C 接口类型:SPI 封装 / 箱体:QFN-32 封装:Tray
MRF8HP21080HR3 功能描述:射频MOSFET电源晶体管 HV8 2.1GHZ 160W NI780H-4 RoHS:否 制造商:Freescale Semiconductor 配置:Single 晶体管极性: 频率:1800 MHz to 2000 MHz 增益:27 dB 输出功率:100 W 汲极/源极击穿电压: 漏极连续电流: 闸/源击穿电压: 最大工作温度: 封装 / 箱体:NI-780-4 封装:Tray